Multiresolution mode decomposition for adaptive time series analysis

نویسندگان

چکیده

This paper proposes the multiresolution mode decomposition (MMD) as a novel model for adaptive time series analysis. The main conceptual innovation is introduction of intrinsic function (MIMF) form∑n=−N/2N/2−1ancos⁡(2πnϕ(t))scn(2πNϕ(t))+∑n=−N/2N/2−1bnsin⁡(2πnϕ(t))ssn(2πNϕ(t)) to nonlinear and non-stationary data with time-dependent amplitudes, frequencies, waveforms. expansion coefficients {an}, {bn}, shape {scn(t)} {ssn(t)} provide innovative features For complex signals that are superposition several MIMFs well-differentiated phase functions ϕ(t), new recursive scheme based on Gauss-Seidel iteration diffeomorphisms proposed identify these MIMFs, their coefficients, series. Numerical examples from synthetic natural phenomena given demonstrate power this method.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

a time-series analysis of the demand for life insurance in iran

با توجه به تجزیه و تحلیل داده ها ما دریافتیم که سطح درامد و تعداد نمایندگیها باتقاضای بیمه عمر رابطه مستقیم دارند و نرخ بهره و بار تکفل با تقاضای بیمه عمر رابطه عکس دارند

An Adaptive Data Analysis Method for nonlinear and Nonstationary Time Series: The Empirical Mode Decomposition and Hilbert Spectral Analysis

An adaptive data analysis method, the Empirical Mode Decomposition and Hilbert Spectral Analysis, is introduced and reviewed briefly. The salient properties of the method is emphasized in this review; namely, physical meaningful adaptive basis, instantaneous frequency, and using intrawave frequency modulation to represent nonlinear waveform distortion. This method can perform and enhance most o...

متن کامل

Domain Decomposition for Multiresolution Analysis

This paper describes a method for converting an arbitrary mesh with irregular connectivity to a semi-regular multiresolution representation. A shape image encoding geometric and differential properties of the input model is computed. Standard image processing operations lead to an initial decomposition of the model that conforms to its salient features. A triangulation step performed on the res...

متن کامل

Using empirical mode decomposition to correlate paleoclimatic time-series

Determination of the timing and duration of paleoclimatic events is a challenging task. Classical techniques for time-series analysis rely too strongly on having a constant sampling rate, which poorly adapts to the uneven time recording of paleoclimatic variables; new, more flexible methods issued from Non-Linear Physics are hence required. In this paper, we have used Huang’s Empirical Mode Dec...

متن کامل

Fast Intrinsic Mode Decomposition and Filtering of Time Series Data

The intrinsic mode function (IMF) provides adaptive function bases for nonlinear and non-stationary time series data. A fast convergent iterative method is introduced in this paper to find the IMF components of the data, the method is faster and more predictable than the Empirical Mode Decomposition method devised by the author of Hilbert Huang Transform. The approach is to iteratively adjust t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied and Computational Harmonic Analysis

سال: 2021

ISSN: ['1096-603X', '1063-5203']

DOI: https://doi.org/10.1016/j.acha.2019.09.006